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Introduction: Furosemide is commonly prescribed to patients with chronic kidney disease (CKD) but may

impair the kidney’s excretion of protein-bound uremic toxins (PBUTs) via the organic anion transporters 1

and 3 (OAT1 and OAT3). We evaluated the association between furosemide prescription (status and dose

level) and the serum concentrations of free OAT1/3-inhibiting uremic toxins (UTs) in patients with CKD.

Methods: We included 2342 patients with CKD (stages 2–5) from the CKD–Renal Epidemiology and In-

formation Network (CKD-REIN) cohort and with centralized serum UT assay data at baseline. The UTs were

assayed using liquid chromatography - tandem mass spectrometry. The OAT1/3-inhibiting UTs identified

in a literature review included indoxyl sulphate (IS), kynurenine (Kyn), p-cresyl sulphate (PCS), and indole-

3-acetic acid (IAA). Multiple linear regression was used to assess each PBUT or their sum (SUTs free) as the

dependent variable.

Results: Patients prescribed furosemide (n ¼ 799, 34%) were older and had a lower estimated glomerular

filtration rate (eGFR), a higher C-reactive protein (CRP) concentration, more comorbidities, and more

concomitant medications than patients not prescribed furosemide. After adjustment for potential

confounders, patients prescribed > 120 mg furosemide had significantly higher serum concentrations

of SUTs free (þ19.1%), IS (þ31.9%), Kyn (þ9.3%), PCS (þ29.3%), and IAA (þ162.9%) than patients not

prescribed furosemide. Using a smooth function to model the association between the furosemide dose

level and PBUTs, we observed (for SUTs free and each free UT) a steep increase between 80 and 100 mg

and then a high plateau.

Conclusion: In patients with CKD, furosemide (particularly at a dose level > 120 mg) is independently

associated with higher serum free PBUT concentrations. Our findings suggest that drug-UT competition

contributes to PBUT accumulation.
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KD is an increasingly important public health
issue, with an estimated worldwide prevalence of

11% to 13%.1 The prevention and management of CKD
progression are major challenges because the latter in-
creases morbidity and mortality rates and is a major
risk factor for cardiovascular (CV) disease.2

As kidney function declines in patients with CKD,
several solutes that are usually excreted by healthy
1
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Figure 1. A schematic diagram of the putative competition between
furosemide and protein-bound uremic toxins in chronic kidney dis-
ease. In patients with a furosemide prescription, competition for
OAT1 and OAT3 might lead to reduced tubular excretion of PBUTs
and thus elevated serum PBUT concentrations. OAT, organic anion
transporter; PBUT, protein-bound uremic toxin.
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kidneys are retained in the body. When an accumu-
lated solute impairs one or more biological functions, it
is referred to as a UT.3-5 UTs are categorized as (i) small
water-soluble molecules, (ii) protein-bound com-
pounds, or (iii) middle molecules. UTs are nontradi-
tional CKD-related risk factors and contribute to CKD
progression, CV morbidity, CV mortality, and bone
dysfunction.6,7 Moreover, UTs are often considered to
be the main cause of the CKD-associated symptom
burden.8,9 It is therefore essential to identify factors
that influence UT concentrations.

Given their ability to bind to albumin, PBUTs are
predominantly eliminated through specific influx
channels in the proximal renal tubules, such as the
OAT1 and/or OAT3.10 The results of in vivo and in vitro
studies have shown that IS, Kyn, PCS, and IAA are
excreted by both OAT1 and OAT3, whereas
kynurenate (KA) is excreted by OAT1 only.11-20

CKD is associated with a higher risk of premature
mortality and CV disease and a higher prevalence of
coexisting diseases. To manage all these complications,
patients with CKD often have to take 52 or more
medications concomitantly.21 This polypharmacy re-
sults in a greater frequency of adverse drug reactions
and can increase the likelihood of pharmacokinetic
interactions between drugs and UTs.22 Many PBUTs
and drugs prescribed to patients with CKD are trans-
ported from the blood into the urinary tract through
the OAT system.23,24 The OATs are mainly expressed
in the liver, brain, and kidney and are known to be
involved in the transport of proton-pump inhibitors,
diuretics, nonsteroidal antiinflammatory drugs, anti-
viral drugs, and antibiotics.23,25,26 A few studies have
shown that inhibition of OAT1 or OAT3 by a drug
induces the accumulation of PBUTs.24,27-30

The loop diuretic, furosemide is widely prescribed
for managing blood pressure and hypervolemia in pa-
tients with CKD. Importantly, OAT1 and OAT3 are
involved in the transport of furosemide. These 2
transporters have similar affinities and inhibition po-
tencies for furosemide, and the results of an in vivo
study in the mouse indicated that OAT1 and OAT3
contribute equally to furosemide excretion.31-34

Therefore, we hypothesized that (i) dose-dependent
competition between furosemide and selected PBUTs
(IS, Kyn, PCS, IAA, and KA) for OAT1 and/or OAT3
leads to higher serum free UT concentrations in
furosemide-treated patients with CKD than in those not
treated with furosemide, and (ii) this difference is in-
dependent of other determinants of UT concentrations,
such as the eGFR (Figure 1). To the best of our
knowledge, the association between furosemide pre-
scription and serum PBUT concentrations has not
previously been investigated in nondialyzed patients
2

with CKD. The objective of the present study was to
investigate the association between furosemide pre-
scription and serum PBUT concentrations in patients
with CKD participating in the CKD-REIN study.35
METHODS

Data Source and Population

The CKD-REIN is a prospective cohort study conducted
in France. The study is nationally representative in
terms of the geographical location and legal status of the
participating centers. From 2013 to 2016, we included
3033 patients with moderate-to-advanced CKD and who
were not on maintenance dialysis and had not been
transplanted. The CKD-REIN study’s rationale, design,
and methods have been described in detail elsewhere.18

The protocol was approved by the French National
Institute of Health and Medical Research’s independent
ethics committee (CEE IRB00003888 (Paris, France) on
June 13, 2013, and the study was registered at
ClinicalTrials.gov (NCT03381950). All the study
Kidney International Reports (2025) -, -–-
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participants were aged$18 and provided their written,
informed consent.

In the present analysis, we included patients for
whom a serum sample had been collected within 3
months of inclusion and who had UT assay data
(n ¼ 2406). Patients with missing data on the prescrip-
tion of potential OAT1/OAT3–inhibiting drugs and/or
the prescribed dose level of furosemide were excluded
(n ¼ 64). Therefore, a total of 2342 patients were
included in the final analysis (Supplementary Figure S1).

Assessment of Furosemide Prescriptions

Participants were asked to bring all their drug pre-
scriptions (issued by any physician) from the past 3
months to the inclusion visit. The drugs were then
coded by clinical research associates using an electronic
case report form linked to the international Anatomical
Therapeutic and Chemical thesaurus.36 For each drug
prescription, the trade name, international nonpropri-
etary name, Anatomical Therapeutic and Chemical
class, unit dose, prescribed daily dose level, pharma-
ceutical formulation, and administration route were
available. We chose furosemide (Anatomical Thera-
peutic and Chemical C03CA01) as a drug known to
inhibit OAT1 and OAT3 at therapeutic concentrations
and that is commonly prescribed to patients with CKD.
Furosemide strongly inhibits OAT1 and OAT3.31-34

Patients who received other loop diuretics than furo-
semide (bumetanide [n ¼ 25] and piretanide [n ¼ 1])
were classified into the “no prescription” group.

Covariates

Baseline data (including sociodemographic character-
istics, medical histories, and laboratory data) were
collected from interviews, medical records, and self-
questionnaires by clinical research associates. Sex was
defined based on assignment at birth (men or women).
Diabetes was defined as the prescription of a glucose-
lowering drug, a glycated hemoglobin
concentration $ 6.5%, a fasting glucose
concentration $ 7 mmol/, or a nonfasting glucose
concentration $ 11 mmol/l. The CV history at baseline
was assessed through medical records and included
heart failure, coronary artery disease, cerebrovascular
disease, peripheral arterial disease, and cardiac rhythm
disorders. Any history of acute kidney injury was
recorded. Routine laboratory data were recorded in
hospital central laboratories and/or private medical
laboratories as part of the patients’ usual care. The
urine albumin-to-creatinine ratio was measured or was
estimated from the protein-to-creatinine ratio.37 Height
and weight data recorded by nephrologists or outpa-
tient nurses during a routine visit were used to
calculate the body mass index
Kidney International Reports (2025) -, -–-
(kg/m2). Prescriptions of potential OAT1 or 3 inhibitors
included thiazides, thiazide-like diuretics, proton-
pump inhibitors, and angiotensin II receptor blockers.

Serum Concentrations of UTs, and Other

Centralized Measurements

At baseline, serum samples were collected from fasting
patients in the morning, immediately stored at 4 �C, and
aliquoted within 6 hours without additional processing.
The samples were stored at �80 �C in a biological
resource center (Biobanque de Picardie, BRIF number:
BB-0033-00017, Amiens, France) and shipped frozen to
Paris (France) for analysis. The staff at each laboratory
were blinded to the outcomes and the patients’ charac-
teristics. Serum concentrations of CRP and albumin were
measured centrally. Serum CRP concentrations were
assayed on a chemistry analyzer (Architect C16000,
Abbott, Chicago, IL), and serum albumin concentrations
were measured by immunoturbidimetry (Atellica CH,
Siemens, Erlangen, Germany). eGFR was estimated using
the 2009 CKD Epidemiology Collaboration equation. The
centralized isotope dilution mass spectrometry-traceable
creatinine concentration was determined with enzyme
assays. UT fractions in serum were assayed using a
validated ultra-high-performance liquid chromatog-
raphy tandem mass spectrometry technique, as
described previously.38 To determine total UT concen-
trations, a 50-ml serum sample was precipitated with 340
ml of methanol plus 25 ml of isotope-labelled internal
standards. After centrifugation for 10 minutes at 9000 g,
the supernatant was evaporated under a nitrogen stream
and then reconstituted in 80 ml of water. Free UT con-
centrations were determined by ultrafiltration; 150 ml of
serum was introduced into an ultracentrifugal filter
(pore cut-off: 30 kDa) and centrifuged at 13,300 g for 20
minutes. Given that PBUTs are mainly bound to albu-
min (which weighs 65 kDa and so does not pass through
the filter), the residual filtrate contained only the free
UT fraction. The free KA concentration was below the
limit of detection (< 0.01 mg/l) in most patients and so
was not included in our analysis.

We conducted a literature review of in vivo and in vitro
studies related to each of the 10 studied UTs in the CKD-
REIN cohort to identify and select toxins with sufficient
evidence of excretion via OAT1/OAT3 (Supplementary
Table S1 and Table S2). IS, Kyn, PCS, IAA, and KA
were selected, and free and total serum concentrations of
these PBUTs were assessed. We considered the free
fractions in the main analysis because only unbound UTs
are toxic and are excreted by the OATs.

Statistical Analyses

Continuous variables were reported as the median
(interquartile range) or the mean (S), as appropriate.
3
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Categorical variables were quoted as absolute and
relative values. First, we described the distribution of
each selected PBUT concentration. The PBUT concen-
trations and other variables with a skewed distribution
were log-transformed. We used the Wilcoxon rank-
sum test to compare PBUT concentrations in patients
with versus without furosemide prescriptions. We
created a variable (denoted hereafter as SUTs free) to
describe the sum of the free fraction concentrations of
the PBUTs (IS, Kyn, PCS, and IAA) excreted by OAT1
and/or OAT3. This approach has been used in other
studies of toxic effects.39 We then used scatter and box
plots to describe the distribution of the log of each free
PBUT concentration and SUTs free by furosemide dose
level category.

We next assessed the association between the PBUTs
(as SUTs free and for each individual PBUT) and
furosemide status (i.e., furosemide prescription or not),
dose category or dose level using a smooth function.
We hypothesized that if furosemide contributes to
PBUT accumulation in patients with CKD, the baseline
values of SUTs free will be higher in patients pre-
scribed the OAT1/OAT3 inhibitor, furosemide. For
SUTs free and each free PBUT studied, crude and
multiple linear models (fitted with the maximum like-
lihood) were used to assess the association between
furosemide and the PBUTs at baseline. First, the
furosemide dose level was treated as a categorical
variable (0 mg, 10–40 mg, 60–120 mg, and > 120 mg).
None of the patients had been prescribed a furosemide
dose level < 10 mg or between 40 and 60 mg. The
categories were chosen using quantiles of the pre-
scribed dose level distribution. Next, the furosemide
dose level was modelled as a continuous variable with
natural splines and knots at 40, 80, 100, and 120 mg.
We adjusted the data for the following clinically
relevant factors identified in our literature review: age,
sex, body mass index, smoking status, diabetes, a
history of CV disease and acute kidney injury, eGFR
(adjusted with natural splines, with 1 knot at 33 ml/
min per 1.73 m2 and boundary knots at 8.3 and 89.7
ml/min per 1.73 m2), urine albumin-to-creatinine
ratio (log), serum concentrations of CRP (log) and
albumin, the prescription of potential OAT1/3-
inhibiting drugs, and the number of other drugs
prescribed. The assumptions of linearity, homosce-
dasticity, and normality of residuals for linear regres-
sion were assessed using residuals versus fitted value
plots, scale-location plots, and Q-Q plots.

To deal with missing covariate data, we used the
MICE package in R software (version 4.1.2) to perform
multiple imputations with chained equations.40,41 The
analysis required 24 imputed datasets to achieve
replicable standard error estimates. The imputation
4

model included all variables from the main analysis
(cumulative free UTs, furosemide, and covariates).
Linear regression models were generated for each
dataset, and pooled regression coefficients were ob-
tained according to Rubin’s rules. In a secondary
analysis, we used the same models but with the total
serum UT concentration as the dependent variable. As
sensitivity analysis, we tested the interaction between
furosemide dose level and eGFR and repeated the
analysis with additional adjustment for uric acid. As a
negative control, we performed the same analysis using
hydrochlorothiazide as the dependent variable. The
threshold for statistical significance was set to P< 0.05.
All statistical analyses were performed with R software
(version 4.1.2).
RESULTS

The Patients’ Baseline Characteristics

At baseline, a total of 2342 patients were included
(Table 1, Supplementary Figure S1). The median age
was 68 years (interquartile range: 60–76), 1013 patients
(66%) were men, 1211 (52%) had a history of CV dis-
ease, 955 (41%) had diabetes, and the mean eGFR was
35 ml/min per 1.73 m2 (Table 1). Of the patients, 799
(34%) had been prescribed furosemide. Relative to
patients without a furosemide prescription, patients
with a furosemide prescription were older and had a
lower eGFR, greater frequencies of previous CV disease,
diabetes and acute kidney injury, a higher CRP con-
centration, a lower hematocrit, and more drug pre-
scriptions (Table 1).

PBUTs and Furosemide Prescription

Apart from total IAA, the median serum free and total
concentrations of all the studied toxins (SUTs free, IS,
Kyn, PCS, and IAA) were significantly higher in pa-
tients with a furosemide prescription (Supplementary
Table S3).

Among patients with a furosemide prescription and
data on eGFR (n ¼ 792), the proportion prescribed a 10
to 40 mg dose level ranged from 67% in the G2 to G3a
group to 52% in the G4 to G5 group. In contrast, the
proportion of patients receiving a high furosemide dose
level increased as the eGFR decreased; 18% of the G2 to
G3a group and 27% of the G4 to G5 group received 60
to 120 mg, and 15% of the G2 to G3a group and 21% of
the G4 to G5 group received > 120 mg group
(Supplementary Figure S2).

All the serum PBUT concentrations studied had a
right-skewed distribution (Supplementary Figure S3).
The logarithmic of serum free PBUT concentrations
increased progressively across furosemide dose level
categories (Figure 2).
Kidney International Reports (2025) -, -–-



Table 1. Patient characteristics at baseline, overall, and by furosemide prescription

Characteristic
Overall

N [ 2342

Furosemide prescription

Missing data (n, %)No n [ 1543 Yes n [ 799

Sociodemographic variables

Age (yrs), median [IQR] 68 [60–76] 67 [57–74] 71 [65–78] 0, 0%

Men 1550 (66%) 1013 (66%) 537 (67%) 0, 0%

Smoking status 14, 0.6%

Current smoker 287 (12%) 200 (13%) 87 (11%)

Nonsmoker 947 (41%) 634 (41%) 313 (39%)

Ex-smoker 1094 (47%) 700 (46%) 394 (50%)

BMI (kg/m2), mean (SD) 28.8 (5.9) 27.6 (5.3) 31.0 (6.3) 44, 1.9%

History

Cardiovascular 1211 (52%) 631 (41%) 580 (73%) 13, 0.6%

Atheromatous CV event 857 (37%) 441 (29%) 416 (53%) 26, 1.1%

Non-atheromatous CV event 741 (32%) 341 (22%) 400 (50%) 18, 0.8%

Diabetes 955 (41%) 490 (32%) 465 (58%) 5, 0.2%

Acute kidney injury 508 (23%) 290 (20%) 218 (29%) 169, 7.2%

Laboratory

eGFR (ml/min per 1.73 m2), mean (SD) 35 (13) 37 (14) 30 (12) 15, 0.6%

Albumin-to-creatinine ratio (mg/g), median [IQR] 109 [22–492] 89 [19–454] 168 [30–591] 360, 15%

C-reactive protein (mg/l), median [IQR] 2.4 [1.1–5.1] 2.0 [1.0–4.4] 3.1 [1.5–6.6] 126, 5.4%

Serum albumin (g/l), mean (SD) 40.5 (4.2) 40.9 (4.1) 39.7 (4.2) 9, 0.4%

Hematocrit (%), mean (SD) 39.5 (4.8) 39.9 (4.8) 38.6 (4.8) 43, 1.8%

Potential OAT1- and/or OAT3-inhibiting drugs

Number of prescribed OAT1 and/or OAT3 inhibitors,
median [IQR]

1.0 [0.0–2.0] 1.0 [0.0–2.0] 1.0 [0.0–1.0] 0, 0%

Angiotensin II receptor blockers 1,031 (44%) 689 (45%) 342 (43%) 0, 0%

Proton pump inhibitors 761 (32%) 435 (28%) 326 (41%) 0, 0%

Thiazide and thiazide-like diuretics 501 (21%) 410 (27%) 91 (11%) 0, 0%

Number of other drugs prescribed, median [IQR] 7.0 [4.0–9.0] 5.0 [3.0–8.0] 9.0 [7.0–11.0] 0, 0%

BMI, body mass index; CV, cardiovascular; eGFR, estimated glomerular filtration rate; IQR, interquartile range; OAT, organic anion transporter.

M Costes-Albrespic et al.: Furosemide and Serum Protein-Bound Uremic Toxin CLINICAL RESEARCH
Associations Between PBUTs, Furosemide

Status, and the Furosemide Dose Level

Category

Simple linear regressions showed that apart from total
IAA, all the PBUTs studied were associated with
furosemide prescription status (i.e., prescription or not)
and a higher furosemide dose level category (Figure 3).

After adjusting for age, sex, the total number of
medications, potential OAT1/3 inhibitors, acute kidney
injury, and CV disease history, serum CRP and albumin
concentrations, diabetes, body mass index, smoking,
urine albumin-to-creatinine ratio, and eGFR, a multiple
linear regression showed a significant association be-
tween furosemide prescription and higher serum con-
centrations of SUTs free (þ7.0%; 95% confidence
interval [CI]: 1.4%–13.1%), free Kyn (þ5.9%; 95% CI:
1.1%–10.7%), and free PCS (þ14.3%; 95% CI: 2.7%–
27.3%) (Figure 3) in patients prescribed furosemide,
compared with patients not prescribed furosemide.
Similar but nonsignificant trends were observed for
free IAA (þ6.1%; 95%CI: �0.4% to 13.0%) (Figure 3).
No significant associations were found for total UT
concentrations (Supplementary Figure S4).

Patients prescribed > 120 mg of furosemide had
significantly higher SUTs free (þ19.1%; 95% CI: 7.7%–
31.9%), free IS (þ31.9%; 95% CI: 13.5%–53.3%), free
Kidney International Reports (2025) -, -–-
Kyn (þ9.3%; 95% CI: 0.4%–19%), free PCS (þ29.3%;
95% CI: 6.1%–57.8%), and free IAA (þ16.9%; 95%
CI: 4.0%–31.5%) concentrations, compared with those
not prescribed furosemide (Figure 3). Furthermore,
those receiving 10 to 40 mg had a higher free Kyn
concentration (þ6.4%; 95% CI: 1.1%–12.0%). In
contrast, serum total KA concentrations were lower in
patients prescribed > 120 mg (�8.2%; 95%
CI: �15.6% to �0.1%) (Supplementary Figure S4).

Associations Between PBUTs and the

Furosemide Dose Level, After the Application of

a Smooth Function

Crude linear regression with the use of a smooth
function to model the relationships between the furo-
semide dose level and free UT concentrations revealed
statistically significant, positive predicted differences
at 20, 40, 60, 80, 120, and 250 mg, compared with
patients without a furosemide prescription
(Supplementary Figure S5). For IAA, the predicted
differences were not significant at the 60 mg and 80 mg
dose levels, compared with patients without a furose-
mide prescription.

The adjusted models showed statistically significant
predicted differences between patients without a
furosemide prescription versus those with a dose level
5



Figure 2. Distribution of free uremic toxins concentrations in patients with CKD, by furosemide dose level category. The ordinate axis rep-
resents the UT concentration (mg/l) corresponding to the 5th, 25th, 50th, 75th, and 95th quantiles. CKD, chronic kidney disease; UT, uremic toxin.
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of 250 mg for SUTs free (þ18.1%; 95% CI: 3.5%–
30.4%) and free IS (þ20.9%; 95% CI: 2.2%–39.7%).
For SUTs free and each free UT, a steep increase be-
tween 80 and 100 mg was followed by a high plateau
(Figure 4).

Sensitivity Analysis

The relationship between the furosemide dose level
category and the free IS concentration was more pro-
nounced in patients with higher eGFR levels (> 45 ml/
min per 1.73 m2); for the other PBUTs and their sum,
the relationship was not influenced by the eGFR level
(within the range observed in the study population,
Supplementary Figure S6). Further adjustment for the
uric acid concentration led to slight weakening of the
associations between the furosemide dose level and
PBUT concentrations (Supplementary Table S4). Lastly,
as a negative control, we assessed the relationship be-
tween hydrochlorothiazide prescription and PBUT
6

concentrations; as expected, no association was
observed (Supplementary Figures S7 and S8).
DISCUSSION

In this cross-sectional analysis of a large cohort of pa-
tients with CKD stages G2 to G5, furosemide was
associated with higher serum concentrations of free
PBUTs. This finding suggests that in vivo, kidney
tubular excretion of some PBUTs can be inhibited by
the concomitant administration of a loop diuretic via
competition at the kidney transporter level. The results
of the present study show the following: (i) PBUT
concentrations were significantly higher in patients
prescribed furosemide than in those not prescribed
furosemide, and (ii) this association was particularly
strong in patients prescribed a furosemide dose level of
> 120 mg. Furthermore, this association was indepen-
dent of other risk factors, such as the eGFR.
Kidney International Reports (2025) -, -–-



Figure 3. Mean relative difference in free uremic toxin concentration, as a function of the furosemide dose level category and furosemide
status (reference: no furosemide prescription). 95% CIs that excluded 0% are given in bold type. aThe sum of free UTs, including the free fraction
of indoxyl sulphate, kynurenine, p-cresyl sulphate and indole-3-acetic acid. *Adjusted for age, sex, the total number of concomitant prescription
medications, the number of potential OAT1/3 inhibitors, the history of AKI and CV disease, serum CRP and albumin concentrations, diabetes,
BMI, smoking status, uACR, and eGFR. AKI, acute kidney injury; BMI, body mass index; CI, confidence interval; CRP, C-reactive protein; CV,
cardiovascular; eGFR, estimated glomerular filtration rate; OAT1/3, organic anion transporters 1 and 3; uACR, urinary albumin-to-creatinine ratio;
UT, uremic toxin.
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The hematocrit was not higher in patients prescribed
furosemide than in those not prescribed furosemide;
this lack of a difference was possibly because of the
lower eGFR observed in the former group. Further-
more, no published studies have found that diuretics
cause a long-term increase in the hematocrit; any in-
crease is observed only shortly after the administration
of the loop diuretic (lasting up to 3 hours).42,43

We evaluated the potential interaction between a
drug and PBUT concentrations through competition for
kidney transporters. We extended previous findings
about drugs that are widely prescribed to patients with
CKD. For example, an in vivo study in rats demon-
strated that the administration of ciprofloxacin
decreased the renal clearance of IS.27 Importantly, the
results of an in vitro study of a proximal tubule cell line
suggested that in patients with CKD, IS, PCS, and KA
might compete with commonly prescribed drugs for
OAT1-mediated secretion.28 At low drug concentra-
tions, competing inhibition was primarily influenced
Kidney International Reports (2025) -, -–-
by UTs. However, significant inhibition occurred at
higher concentrations of furosemide, valsartan, and
losartan (within their therapeutic windows).28 In a
study that included kidney transplant patients, serum
PCS concentrations were significantly higher in pa-
tients prescribed at least 1 OAT inhibitor (n ¼ 311)
than in patients not prescribed an OAT inhibitor
(n ¼ 92), after adjustment for age, eGFR, the serum
albumin concentration, and time since trans-
plantation.29 Lastly, a CKD-REIN study showed that
after adjustments for baseline comorbidities, the num-
ber of coprescribed drugs, and laboratory variables
(including the eGFR), proton-pump inhibitor pre-
scription was significantly associated with elevated
serum concentrations of free and total IS, free and total
p-cresyl glucuronide, and phenylacetylglutamine.30

The results of all these studies suggest that some
drugs compete with PBUTs for OATs.

We found that the associations between the furose-
mide dose level and the free UT concentrations were
7



Figure 4. Predicted free uremic toxin concentrations as a smooth function of the furosemide dose level; adjusted model. The size of the red
circles in the plots are proportional to the number of observations at each data point, with the exact number of observations indicated above
each circle. A total of 54 observations are not shown (distributed between the dose levels of 290 and 1000 mg). For each plot, a table presents
the predicted relative difference between no furosemide prescription and dose levels of 20, 40, 60, 80, 120, and 250 mg (the dose levels
prescribed to > 30 patients). The furosemide dose level was modelled with natural splines with knots at 40 mg, 80 mg, 100 mg and 120 mg. The
model was adjusted for age, sex, the total number of concomitant prescription medications, the number of potential OAT1/3 inhibitors, the
history of AKI and CV disease, serum CRP and albumin levels, diabetes, BMI, smoking status, uACR, and eGFR. AKI, acute kidney injury; BMI,
body mass index; CRP, c-reactive protein; CV, cardiovascular; eGFR, estimated glomerular filtration rate; OAT1/3, organic anion transporters 1
and 3; uACR, urinary albumin-to-creatinine ratio.
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slightly weaker after additional adjustment for uric
acid. The inhibition of urate secretion by hOAT1 and
hOAT3 has previously been investigated in 95 healthy
volunteers; significantly lower excretion of urate was
observed after torasemide administration.44 Further-
more, furosemide was associated with a significantly
higher serum urate concentrations in humans.45,46

However, the association between hyperuricemia and
its clinical consequences remains subject to debate.47

Although uric acid inhibits OAT1 and OAT3,48 its ki-
netic parameters (Km z 943 � 84 mM for hOAT149 and
IC50 z 255 � 34 mM for hOAT3-mediated uptake of
estrone sulphate50) are higher than those of the PBUTs
considered in our study.

PBUT clearance in the kidney is controlled by
tubular secretion. In the proximal tubule, bound solute
fractions shift to free factions before excretion by OATs
1 and 3. In our study, we observed higher concentra-
tions of free PBUTs and no differences in total PBUT
concentrations at dose levels exceeding 120 mg. In
patients with CKD, albumin binding capacity is
significantly below the reference range for healthy in-
dividuals.51 Several studies have reported that
the protein-bound proportions of various PBUTs are
lower in patients with CKD than in healthy in-
dividuals.10,51-53 This lower proportion is thought to
result from the saturation of albumin binding sites by
PBUTs (i.e., competition among PBUTs for albumin
binding) and posttranslational modifications of albumin
(e.g., oxidation, glycosylation, and carbamylation).51

Our results support the hypothesis that furosemide
competes for binding sites on albumin.54,55 We could
also consider an indirect effect of furosemide. For
example, high dose levels of furosemide may induce an
alkaline pH,56 which could alter albumin’s conforma-
tion (the protein is known to undergo pH-dependent
structural transitions)57 and thus reduce its binding
affinity. This change might contribute to the observed
increase in the free fraction of PBUTs.

Better knowledge of the competition between drugs
and PBUTs might help to understand the mechanisms
that lead to the accumulation of PBUTs in patients with
CKD. Although many in vitro studies have identified
medications as OAT1/OAT3 inhibitors, the concentra-
tions are often outside the therapeutic range. André
et al.29 reported on a number of potential inhibitors at
therapeutic dose levels; hydrochlorothiazide (not asso-
ciated with PBUTs in our study) was not among them.
However, several medications (including proton-pump
inhibitors, other diuretics, nonsteroidal antiin-
flammatory drugs, antivirals, and antibiotics) exhibited
a competitive effect.23,25,26 It is therefore important to
consider this potential interaction when prescribing
new drugs to patients with polypharmacy or when
Kidney International Reports (2025) -, -–-
reviewing current prescriptions. As mentioned above,
polypharmacy is common in patients with CKD.
Notably, loop diuretics are often prescribed to patients
with CKD, to control hypertension and hypervolemia,
especially when the eGFR is < 30 ml/min per 1.73 m2.58

Furosemide use might induce various adverse re-
actions, such as hypotension, hyponatremia, and hy-
pokalemia. Here, we described a potential new adverse
drug reaction: the accumulation of certain PBUTs. In
the present study, patients with a bumetanide pre-
scription had higher median UT concentrations than
patients without a bumetanide prescription. However,
because of the small number of bumetanide-treated
patients (n ¼ 25), we cannot say for sure whether
these results are independent of kidney function and
other risk factors. One can nevertheless hypothesize
that bumetanide may be a viable, readily available
alternative to furosemide. Therapeutic concentrations
of bumetanide inhibit OAT3 but not OAT129; relative
to furosemide, bumetanide use might result in weaker
drug-PBUT competition, less PBUT retention, and po-
tential improvements in symptoms and clinically rele-
vant outcomes. However, the results of retrospective
studies of loop diuretic use have been inconclusive
with regard to which specific loop diuretic is most
effective in terms of long-term clinical outcomes and
symptom management; this was probably because of
confounding by indication.59-64 In contrast, the loop
diuretic, torasemide is probably not an option because
it inhibits both OAT1 and OAT3 and reduces urate
excretion.44 Further prospective studies of furosemide
versus bumetanide are essential for determining
whether one or the other has more beneficial effects on
symptoms and clinically relevant outcomes (potentially
mediated by differences in PBUT clearance) in patients
with CKD.

The results of the present study suggested the
presence of a threshold effect for furosemide-PBUT
competition at dose levels above 120 mg. It is impor-
tant to note that the association between furosemide
status and the concentrations of PBUTs (particularly IS
and IAA) would have been masked if we had not taken
account of the furosemide dose level and thus evi-
denced a threshold effect. In contrast, PCS appeared to
exhibit a dose-response effect. One possible explana-
tion for these different effects might relate to the ki-
netics of each PBUT’s excretion via OAT1 and/or
OAT3. Molecules with a low inhibitory constant (Ki),
Michaelis constant (KM) or half-maximal inhibitory
concentration (IC50) exhibit greater affinity for the
transporter in question and are excreted more readily.
OAT1 and OAT3 have similar affinities and inhibition
potencies for furosemide, as indicated by KM values of
38.9 mM and 21.5 mM, IC50 values of 18 mM and 7.43
9
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mM, and Ki values of 11.4 mM and 5.41 mM, respec-
tively.31-34 IS, PCS, IAA, and Kyn have higher Ki, KM,
or IC50 values than furosemide and might thus compete
with the drug for their excretion (Table S1). Notably,
PCS appears to have higher Ki, KM, and IC50 values than
the other PBUTs studied, which may explain the
observed differences in dose-response effects.

Our study had several strengths. First, we assessed a
large number of patients with a confirmed diagnosis of
CKD and who had been recruited through a nationally
representative sample of nephrology outpatient facil-
ities. Second, our detailed survey enabled us to identify
all the furosemide dose levels prescribed and gave us
information on potential confounders (e.g., eGFR,
comorbidities, and other potential OAT1/3 inhibitors
prescribed). Third, free and total UT concentrations
were measured in the same central laboratory, using a
robust, validated, ultrahigh-performance liquid chro-
matography tandem mass spectrometry technique.
Lastly, our analysis of the free UT fractions enabled us
to highlight the association between furosemide and
PBUT concentrations; had we focused solely on the
total UT concentration, this association would not have
been observed.

Our study also had limitations. First, the cross-
sectional design precludes us from assessing the tem-
poral sequence of the relationship between serum
PBUT concentrations and furosemide. However, given
that previous published data indicate that the inhibi-
tion constant (Ki) is higher for PBUTs than for furose-
mide, it is more plausible that furosemide dose level
influences PBUT concentration than vice versa. Second,
although we adjusted our models for several factors
that potentially influence furosemide prescription and
UTs, we cannot rule out residual confounding. For
example, we do not have data on proximal tubular
damage, which could contribute to the impaired
excretion of PBUTs. Third, our definition of furosemide
exposure was based on prescriptions, meaning we
could not confirm actual medication intake. Lastly,
though the variable timing of blood sample collection
may have introduced some measurement variability in
UT concentrations, this effect was likely limited
because of the chronic (rather than acute) administra-
tion of furosemide. Despite these limitations, our
findings might provide a basis for future longitudinal
analyses and might be useful for understanding drug-
PBUT competition.

In conclusion, the results of the present study
showed that the commonly prescribed drug furosemide
was associated with higher serum PBUT concentrations
(including SUTs free, IS, PCS, IAA, and Kyn) in patients
with CKD and thus highlights a potential adverse re-
action to furosemide. The balance between
10
furosemide’s beneficial effects and adverse reactions
must always be considered. In view of the association
between PBUTs and CKD-related morbidity and mor-
tality, our findings provide valuable insights into the
factors that might influence serum PBUT concentra-
tions in patients with CKD.
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