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Artificial intelligence (AI) is increasingly used in many medical specialties. However, nephrology has
lagged in adopting and incorporating machine learning techniques. Nephrology is well positioned to
capitalize on the benefits of AI. The abundance of structured clinical data, combined with the mathe-
matical nature of this specialty, makes it an attractive option for AI applications. AI can also play a sig-
nificant role in addressing health inequities, especially in organ transplantation. It has also been used to
detect rare diseases such as Fabry disease early. This review article aims to increase awareness on the
basic concepts in machine learning and discuss AI applications in nephrology. It also addresses the
challenges in integrating AI into clinical practice and the need for creating an AI-competent nephrology
workforce. Even though AI will not replace nephrologists, those who are able to incorporate AI into their
practice effectively will undoubtedly provide better care to their patients. The integration of AI technology
is no longer just an option but a necessity for staying ahead in the field of nephrology. Finally, AI can
contribute as a force multiplier in transitioning to a value-based care model.
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Artificial intelligence (AI) is a branch of science that
enables machines to mimic basic human cognitive

behavior, making it possible to think, learn, reason, and
act based on prior experience. It has different subsets,
including machine learning (ML), robotics, and natural
language processing (NLP). ML has further subdivisions,
including supervised, unsupervised, deep, and rein-
forcement learning. Figure 1 shows the major subtypes of
ML.

ML is the most common form of AI currently used in
medical science. It is essentially defined as a type of pro-
gram or algorithm that learns from prior experience and
continues to improve performance based on the learning.
Key definitions in the field of AI have been included in
Figure 2.

Clinical scoring systems and other statistical techniques
have long been used in medicine. Sometimes, they are
mislabeled as AI. AI or ML has some similarities with these
systems, but it also differs significantly in that it can adjust
the weightage of each variable and produce results without
any human intervention.1 Some of the algorithms in this
field, such as random forests, decision trees, naive Bayes,
and logistic regression, are adapted from the field of
statistics.

An ML algorithm uses a backbone of artificial neurons,
and the arrangement of these neurons in a layer makes an
artificial neural network.2 Each artificial neural network
consists of 1 input layer, 1 output layer, and 1-2 hidden
layers. These neurons are interconnected with each other
in layers in a similar fashion to that in our brain cells.
These artificial neural networks must be trained with
specific data before they are used for application. This also
involves choosing the adequate number of neurons in each
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layer and the number of layers. A typical lifecycle of AI-
based clinical decision support is depicted in Figure 3.
TYPES OF ML

Supervised ML algorithms must be trained on a previously
structured data set. ML requires raw data that experts must
process to feed into the algorithm. It essentially requires a
programmer to arrange the data into a spreadsheet with
multiple variables.4 ML has the disadvantage of requiring
processed data to feed into its algorithm, which can be a
resource- and time-consuming undertaking, especially if it
is large data set. Unsupervised learning is used to identify
relationships between random variables in a large data set.
It requires no neural network training because there is no
predefined objective. As a result, this kind of ML is well
suited for complex big data, such as in health care and
genomics. In these cases, the data are usually unstan-
dardized, highly granular, and contain a large number of
variables, making it extremely difficult for a human to
identify a pattern.5

Reinforcement learning uses a model that rewards the
desired outcome and minimizes the undesired outcome
until it reaches an optimal solution. This is extensively
used in video games, in which it collects data proactively.
However, this proactive data collection and experimenta-
tion is not possible in a health care setting owing to ethical
issues. So, data collection is limited to retrospective data.6

This type of ML has been used in optimizing antire-
troviral therapy in human immunodeficiency virus pa-
tients7 and adjusting antiepilepsy drugs for seizure
control.8 Figure 4 shows practical examples of applications
in ML.
1

112

26 November 2024 � 5:16 pm � ce

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Drprabhatsingh@hotmail.com
mailto:Drprabhatsingh@hotmail.com
https://doi.org/10.1016/j.xkme.2024.100927
https://doi.org/10.1016/j.xkme.2024.100927


MACHINE LEARNING

Supervised 
Learning 

Unsupervised 
learning

Semi 
supervised

learning

Ensemble 
learning

Reinforcement 
Learning

ClassificaƟon Regression
Cluster 

Analysis
Dimensionality 

reduce

•Random 
Forest
•Decision Tree
•Support 
Vector 

•Regression 
Analysis
•Regression 
Tree
•Bayesian 
Model

•K means
•Hierarchical 
Clustering

•Factor Analysis
•Principal 
component analysis

w
e
b
4
C
=
F
P
O

w
e
b
4
C
=
F
P
O

Figure 1. Subtypes of machine learning.
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AI IN ACUTE KIDNEY INJURY

Acute kidney injury (AKI) is a term that represents a
syndrome of various pathophysiologic processes that
eventually lead to an elevation in serum creatinine (Cr) or
decreased urine with or without an elevation of serum
biomarkers. The challenge with AKI detection is the het-
erogeneous nature of pathophysiology leading to AKI and
multiple AKI phenotypes, which finally manifest as
elevated Cr. This poses a major challenge in developing
algorithms or statistical models to detect early AKI.
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Figure 2. Cycle of AI-based clinical decision support. Abbreviation
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Traditional statistical methods have used various tech-
niques, such as logistic regression analysis or risk scoring,
to predict AKI. The use of AI and ML, however, can
augment and largely refine this ability.

ML has been used to predict AKI in postoperative heart
surgery patients. Lee et al9 performed a retrospective
analysis of 2,010 patients undergoing vascular and thoracic
aortic procedures, as well as cardiac surgery to predict
postoperative AKI in these patients. They used various AI
techniques, including deep learning, random forest,
ical Decision Support 
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Algorithm A set of rules that defines a sequence of operaƟons for computers

Machine learning (ML): Process by which an algorithm encodes staƟsƟcal regulariƟes from a 
database of examples into parameter weights for future predicƟon 

Deep learning (DL) Deep learning (DL) is a type of machine learning that uses mulƟple 
layers of computaƟons to learn from large data sets and extract 
informaƟon without needing human intervenƟon or specific training 
data sets. It uses CNN, where not all layers are fully connected to 
each other and has deeper layers, allowing it to efficiently 
handle complex tasks with less processed data and resources

ArƟficial neural network (ANN) Arrangement of neurons in a layer form, which are interconnected 
with each other in a similar fashion to our brain cells. 

ConvoluƟonal neural network (CNN) CNN is disƟnct from ANN in that not all layers are fully connected to 
each other. CNN has many deeper layers than ANN, and the number of 
neurons in each layer decreases with depth.

Decision tree A type of supervised learning method in which choices and outcomes 
are represented as a tree, and each tree contains nodes (aƩributes in 
groups) and branches (values in a node).

Hierarchical clustering An algorithm that forms groups of elements that are like one another 
and different from others by iteraƟvely merging points according to 
pairwise distances

Random forest An arƟficial intelligence model that assembles outputs from a set of 
decision trees and uses the majority vote or average predicƟon of the 
individual trees to produce a final predicƟon

Gradient boosƟng An arƟficial intelligence (AI)technique for iteraƟvely improving 
predicƟve performance by ensuring that the next permutaƟon of the 
AI model, when combined with the prior permutaƟon, offers a 
performance improvement.

Support vector machine (SVM) SVMs are used to idenƟfy paƩerns in complex labeled datasets and 
classify data transformaƟons. In non-medical fields, SVMs detect subtle 
paƩerns, such as handwriƟng recogniƟon, idenƟfying fraudulent credit 
cards, and facial detecƟon.

Ensemble model A model that assembles outputs from mulƟple algorithms to achieve 
predicƟve performance that is greater than that of individual 
algorithms.
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Figure 3. Important AI-related terms and definitions. Abbreviation: AI, artificial initelligence.
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decision tree, etc, and demonstrated that extreme gradient
boosting was better than traditional analytical models in
predicting postoperative AKI.

Another deep learning–based model was developed
using a data set of 703,782 patients. Toma�sev et al10

predicted AKI in 55% of cases with AKI and 90.2% of
Kidney Med Vol XX | Iss XX | Month 2024 | 100927
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cases with AKI requiring dialysis. This model could predict
AKI 48 hours before dialysis. However, it had a high false-
positive rate of 1 in 2. Another issue with this study was
regarding generalizability, as the model was trained on
almost all male individuals, so external validity remains a
concern.10
3
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Machine learning types 
 

 
 Examples 
 

Supervised learning is used to predict a known 
outcome and is frequently used in risk esƟmaƟon 
tools 

 Renal mass detecƟon and 
classificaƟon based on 
radiologic images such as CT 
scans and MRI scans.  

 IdenƟficaƟon of cancer and 
pathologic images based on 
the training data 

 
Unsupervised learning is useful for idenƟfying 
paƩerns and data, and usually, there is no 
predefined predicted outcome. 

 
 IdenƟfy a common paƩern in 

a group of paƟents with 
unexplained acute kidney 
injury. 

 ClassificaƟon of heart failure 
with preserved ejecƟon 
fracƟon based on geneƟc 
variaƟons. 

 
Reinforcement learning is based on learning from 
interacƟons and is designed to take steps to 
maximize rewards. A Reward Model can be designed 
to target clinical improvement. 

 
 OpƟmizing the dosing of 

immunosuppressive 
medicaƟon in transplant 
paƟents. 

 Dosing of erythropieƟn in 
hemodialysis paƟents 

 
Natural language Processing allows to extract 
selected informaƟon from a large text. 

 
Symptom idenƟficaƟon from a clinical 
note 
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Figure 4. Practical examples of various subdivisions of machine learning. Abbreviations: CT, computed tomography; MRI, magnetic
resonance imaging.
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Al-Jaghbeer et al11 performed a multicenter obser-
vational study using a clinical decision support system to
determine its effect on length of stay and in-hospital
mortality in the case of AKI. They demonstrated a
reduction in hospital length of stay by 1.2 days and a
slight modest decrease in mortality outcomes.11 Not all
such clinical decision support system studies have yiel-
ded positive results. Most recently, in 2021, a ran-
domized control trial involving 6,030 patients using
clinical decision support systems and continuing on
popup alerts in electronic health records (EHRs) for AKI
did not show any improvement in length of stay or
mortality.12

Unsupervised learning can also be used to analyze large
clusters of complex data and identify meaningful re-
lationships or patterns. Chaudhary et al13 used unsuper-
vised ML to identify 3 different types of phenotypes in
sepsis-related AKI in intensive care unit patients. This
4
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was a unique study of its kind, using ML to better un-
derstand sepsis-related AKI.13

AI has been used to risk stratify patients with immu-
noglobulin A nephropathy to identify those with a higher
risk of progression. Chen et al14 used the extreme gradient
boosting algorithm in a multicenter retrospective cohort
study of 2,047 patients with immunoglobulin A ne-
phropathy. They used an ML method called extreme
gradient boosting. This system used multiple clinical var-
iables, such as urine protein excretion, hematuria, serum
albumin, and serum Cr, as well as kidney biopsy findings
of tubular interstitial fibrosis and global sclerosis to iden-
tify those at a higher risk of kidney function loss.14

The majority of AKIs cannot be prevented because, in
many cases, an AKI would have already occurred before
coming into the hospital or they would have had an
evolving AKI that had not yet manifested. AI can help
refine and process the current systems to help identify not
Kidney Med Vol XX | Iss XX | Month 2024 | 100927
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only AKI but also patients who are at a high risk of
developing AKI, resulting in the creation of early inter-
vention plans. Newer AI techniques such as NLP can re-
view many clinical notes and gather information based on
preset parameters. This can be used to make strategies and
assessments from the review of such medical records and
ultimately assist clinicians in improving diagnostic accu-
racy and saving time.1
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AI IN CHRONIC KIDNEY DISEASE

Chronic kidney disease (CKD) remains underrecognized
and underreported partly owing to a lack of cost-effective
screening measures. In addition, there is a wide variation
in the referral patterns to nephrology, ranging across a
spectrum of estimated glomerular filtration rate values.
There is a big unmet need for the early and accurate
diagnosis of CKD. AI- or ML-driven algorithms integrated
with EHRs, especially in primary care settings, can help
address this issue, triggering early nephrology referral and
improving outcomes in such patients with diabetic kidney
disease (DKD).

A logistic regression analysis–based AI model has been
developed to predict the progression of DKD. Makino
et al15 used data from 64,059 diabetes patients from EMR
to develop a predictive model, which is based on albu-
minuria and other biomarkers such as urinary L-type fatty
acid-binding protein and serum tumor necrosis factor-α.
AI was able to predict the DKD progression with 71%
accuracy.15 ML can also be used to predict complications
from diabetes mellitus using variables such as gender, age,
time from diagnosis, body mass index, glycated hemo-
globin, hypertension, and smoking habits. Dagliati et al16

used the random forest model to detect the onset of dia-
betic retinopathy, neuropathy, and nephropathy with ac-
curacy of 0.838.

A predictive model–based AI approach has been used to
identify patients with a higher risk of Fabry disease. Jeffries
et al17 used a mix of phenotypic signals, as well as other
clinical characteristics, to screen patients who have the
highest risk of Fabry disease.

Recently, there has been a proliferation of AI models in
CKD care. One such model is pulse data, which received a
patent in 2021 and uses ML to determine the risk of CKD
progression. It uses a combination of laboratory data, ge-
netic tests, patient symptoms, and biomarkers. It requires
at least 1 result on tumor necrosis factor receptor 1 and
kidney injury molecule 1. This model showed excellent
results in terms of predicting CKD progression with a C
statistic of 0.84 at 1 year, 0.81 at 2 years, and 0.79 at 5
years.18

Another model developed by Renalytix AI, KidneyIn-
telX, has been developed to assist in managing DKD. This
model uses plasma biomarkers, including tumor necrosis
factor receptor 1, tumor necrosis factor receptor 2, and
kidney injury molecule 1, along with 27 other laboratory
values, 20 International Classification of Diseases diagnostic codes,
Kidney Med Vol XX | Iss XX | Month 2024 | 100927
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30 medications, and vital signs measured at 3 separate
times. This model also showed decent accuracy in terms of
CKD progression with a C statistic of 0.77.19 KidneyIntelX
test was integrated into the EHR at Mount Sinai Health Care
System in New York in 2020. A subsequent economic
study based on that data revealed that the cost of Kid-
neyIntelX and related preventative measures could be
offset by cost savings arising from the decreased need for
dialysis, decreased “crash dialysis” starts, and reduction in
DKD progression.20
AI IN DIALYSIS

Dialysis delivery in the United States is a highly stan-
dardized process, and, especially, in-center dialysis is
provided in a monitored setting. It generates lots of
patient-related data, which is particularly attractive from an
ML standpoint. Dialysis-related data include prescriptions
(treatment time, ultrafiltration rate, and dialysate flow
rate) and medications administered during dialysis (such
as erythropoiesis-stimulating agents). In addition to this,
patient-related data are also available in a standardized
format and stored digitally in EHRs.

NLP software can extract relevant information from
these big data, which can be used to train the ML algo-
rithm to improve dialysis performance, predict intra-
dialytic hypotension, and perform many other roles.21

Chan et al22 used NLP to extract data from EHRs to iden-
tify 7 common hemodialysis-related symptoms in a large
set of dialysis patients. Some of the symptoms included
fatigue, pain, and nausea or vomiting. They demonstrated
that NLP had higher sensitivity as compared to the Inter-
national Classification of Diseases code in terms of identifying
these symptoms, although the specificity was the same.22

Recurrent neural networks have been used to predict
the risk for intradialytic hypotension in a sample data of
261,647 hemodialysis sessions. Lee et al23 developed a
model that could predict intradialytic hypotension with
higher accuracy than other models, such as logistic
regression models and boosting machines.

Chaudhuri et al24 developed an ML model to predict the
risk of hospitalization in outpatient hemodialysis patients.
This resulted in the development of an intervention
pathway with the assistance of the interdisciplinary team,
and they were able to lower hospitalization rates.24

Yang et al25 used a full-adjusted Cox proportional
hazards model to predict mortality in hemodialysis pa-
tients. In this model, they used 8 parameters, including
age, Cr, potassium, Kt/V hemoglobin, albumin, diabetes
mellitus, and cardiothoracic ratio, to determine the risk of
mortality.25

There is growing literature on the use of ML or deep
learning in dialysis, and standardized delivery of dialysis
makes it an attractive area of AI application. Despite this, AI
or ML is not routinely used in dialysis yet, barring a few
exceptions, such as the anemia model. One of the reasons
for the slow adoption of AI in the field of dialysis is the
5
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lack of regulations around AI applications in medicine,
data privacy, and its integration into clinicians’ daily
workflow. One of the challenges is related to technology,
which requires technical experts and infrastructure to
analyze these data to feed into the ML algorithm.
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AI IN KIDNEY TRANSPLANT

Kidney transplant is the treatment of choice for most pa-
tients with kidney failure. However, the short supply of
organ donors, the risk of kidney rejection, and long-term
allograft survival remain significant issues in this field. AI
has been applied in almost every aspect of kidney trans-
plantation, including organ allocation, immunosuppres-
sive therapy transplant imaging, and transplant pathology.

A recent study used a prediction system called “iBox” to
predict the long-term risk of allograft failure. It showed that
iBox could predict allograft failure better than nephrolo-
gists.26 This algorithm uses random forest or ML and has
been the only model so far that has been externally validated
in various clinical trials in the United States and Europe.27

AI can play a role in donor matching and organ alloca-
tion, and address health care equity concerns. The United
Network for Organ Sharing manages organ allocation in the
United States. The current tier-based system has raised
concerns about inequitable access to transplants.28 A new
AI-based framework called continuous distribution, which
uses a point system to prioritize patients, has been launched
for lung allocation. It aims to make organ transplants more
equitable and is currently being done for only lung trans-
plants, but it may act as a primer for other organ transplants,
such as kidneys, pancreas, etc.29

Similarly, AI algorithms can be used to improve donor-
recipient matching in organ transplants. Bae et al30

developed an online tool using a random survival forest.
This algorithm assists transplant physicians in deciding
whether to accept or reject marginal kidney offers. It uses
the expected posttransplant survival score and Kidney
Donor Profile Index and can predict waitlist survival and
postkidney transplant survival.30

Another model used an ML or gradient boosting sur-
vival model to predict long-term survival in liver transplant
patients. Yasodhara et al31 developed a model to predict
both general and cardiac mortality and also analyzed the
effects of pretransplant and posttransplant diabetes mellitus
on mortality in liver transplant patients. This is the largest
study to date examining the impact of diabetes mellitus on
the mortality of liver transplant recipients. This model was
also externally validated using data from the University
Health Network data set from Toronto, Canada (see
Table 1).31 Figure 5 shows clinical applications of AI across
multiple domains in nephrology.
668
669
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CHALLENGES IN AI IMPLEMENTATION

Despite these benefits of AI, multiple challenges affect the
integration of AI into clinical settings. Some of the
6
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significant challenges are listed below. Figure 6 highlights
some of the challenges in AI implementation.

Bias

AI technology is not immune to biases and can introduce
biases at various stages, starting with data collection and
processing. Biases can stem from nonrepresentative data
samples and existing health care inequities, leading to
inaccurate outcomes. For example, race-based glomerular
filtration rate adjustments in clinical practice may result in
delayed kidney disease detection and care for Black
patients.42,43

Data Quality Issues

Health care data are heterogeneous, nonstandardized, and
embedded in clinical notes and other patient-related data.
This makes it challenging for AI professionals to process
them in a way that an ML algorithm can understand. In
addition, these data are segregated, unlabeled, and stored
locally, and are highly variable owing to multiple EHR
platforms.

Missing data on certain patient groups can lead to poor
data quality, causing ML models to underperform. This can
exaggerate biases and inaccuracies, affecting the models’
generalizability.

One way to address data entry and processing re-
quirements is to integrate AI models into EHR to gather
data in real time. These accurate data can be passed
through a preprocessed algorithm, which can identify
outliers, missed values, and other sampling errors and
reduce the workload on the human operator.5

Lack of Openness

Black box decision making raises trust issues. Black box AI
refers to AI models that lack clarity about how the data are
processed in the model after entering them. It could be
because the algorithm has not been shared by the devel-
oper, or, in some instances, the developers or engineers
themselves do not fully understand how their own model
functions.44 This lack of transparency in understanding
how a particular decision was reached by Black box AI has
raised doubts in the medical community. This skepticism is
also appropriate, especially if these algorithms are involved
in medical decision making, including life and death
decisions.

Safety Issues

Generally, clinicians are risk averse, and if faced with a
diagnostic dilemma in which there is a possibility of
adverse outcomes, clinicians tend to take a path of safety.
The same is not true for AI.

ML models can have problems with distribution shifts.
In other words, machines have difficulty understanding
changes in context. Machine models may perform poorly
if trained on one distribution set and applied to another.
This problem can be minimized, although not eliminated,
Kidney Med Vol XX | Iss XX | Month 2024 | 100927
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Table 1. Key Publications of AI Applications in Nephrology

Domain Author (Year)
AI Techniques
Used No. of Patients Outcome Predicted Perform e Reference

AKI Lee et al (2018) Decision tree, RF,
XGBoost

2,010 Risk of AKI postcardiac surgery Lowest error rate (26.0%) and the
largest A (0.78; 95% CI, 0.75-0.80)

9

AKI Toma�sev et al
(2019)

Embedding modules,
recurrent neural
network core

703,782 Prediction of future AKI 55.8% o atient AKI events of any severity
were pr ted early within a window of up
to 48 ho in advance, with a ratio of 2 false
predictio for every true positive. ROC
AUC of 1% and PR AUC of 29.7%

10

AKI Zimmerman et al
(2019)

Multivariate logistic
regression, RF, and
ANNs

23,950 Early prediction of AKI following
ICU admission

ML mod can predict AKI onset with a
competi AUC (mean AUC, 0.783 by all-
feature, model)

32

CKD Dagliati et al
(2018)

LR, NB, SVMs, and
RFs

1,000 Predict diabetes complications
nephropathy, neuropathy, and
retinopathy

Provided curacy up to 0.838 16

CKD Chauhan et al
(2020)

RF T2D (n = 871) and
APOL1-HR (n = 498)

Predict progression of CKD in
T2DM and APOL1-HR
genotypes

AUC of ML model was 0.77 (95% CI,
0.75-0.7 n T2D and 0.80 (95% CI, 0.77-
0.83) in OL1-HR, outperforming the
clinical m els

33

CKD Chan et al (2021) RF 1,146 Predict the progression of
diabetic kidney disease

The AU the ML model was 0.77 (95%
CI, 0.74 9) compared with the AUC for
the clini odel, 0.62 (95% CI, 0.61-0.63)

19

CKD Kanda et al (2019) SVMs 7,465 Identifying progressive CKD
from healthy population

SVMs in ing time-series data of the
prognos ategory of CKD from 3 y later
detected high possibility of the outcome
not only atients at very high risks but also
in those ow risks at baseline

34

Dialysis Kim et al (2022) LR, deep-learning
model,
RF,
XGBoost

63,640 dialysis
sessions involving
387 patients

Predict intradialytic hypotension Deep-le g model performed better than
other m ls in terms of the AUROCs
(Nadir90 .905; Fall20: 0.864; Fall20/
MAP10 63)

35

Dialysis Barbieri et al
(2016)

ACM based on ANN 653 (control)
640 (observation)

Clinical decision support to
optimize anemia management
in HD patients

In the o vation phase, median
darbepo consumption significantly
decreas rom 0.63-0.46 μg/kg/mo,
whereas -target hemoglobin values
significa increased from 70.6%-76.6%,
reaching .2% when the ACM suggestions
were im ented

36

Dialysis Zhang et al (2017) SVMs,
ANNs, and RFs

83 PD patients Define pathogen-specific local
immune fingerprints in PD
patients with bacterial
infections

RF-base ature elimination showed the
best ave e performance, with the optimum
biomark ombination comprising 8
features C = 0.993; sensitivity = 98.5%;
and spe ity = 92.6)

37

(Continued)
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Table 1 (Cont'd). Key Publications of AI Applications in Nephrology

Domain Author (Year)
AI Techniques
Used No. of Patients Outcome Predicted Performance Reference

Dialysis Chaudhuri et al
(2021)

XGBoost modeling 182 To decrease hospitalization
rates in HD patients

ML model–based risk-directed
interdisciplinary team interventions are
associated with lower hospitalization rates
and hospital day rates in HD patients
compared with controls

24

Kidney
transplant

Bae et al (2019) RF,
Weibull regressions

Deceased-donor KT
recipients
(N = 120,818) and
waitlisted candidates
(N = 376,272)
between 2005 and
2016

Predicting survival after
deceased-donor KT by donor-
recipient combination

For candidates with EPTS = 80, 5-y waitlist
survival was 47.6%, and 5-y post-KT survival
was 78.9% after receiving kidneys with
KDPI = 20 and 70.7% with KDPI = 80

30

Kidney
transplant

Yasodhara et al
(2021)

CoxPH model
GBS

18,058 Identifying modifiable predictors
of long-term survival in liver
transplant recipients with DM

CoxPH achieves a concordance index of
0.60 (SD, 0.00) for predicting mortality in
patients with no DM, 0.59 (SD, 0.00) for
patients with pre-DM, and 0.70 (SD, 0.01)

31

Kidney
pathology

Zheng et al (2021) Deep CNN 349 Automatic assessment of
glomerular pathologic findings
in lupus nephritis

The proposed model achieved an accuracy
of 0.951 and Cohen’s kappa of 0.932 (95%
CI, 0.915-0.949) for the entire test set for
classifying the glomerular lesions

38

Kidney
pathology

Pan et al (2021) MTL with CNNs 1,289 MLT-based IF classification of
kidney disease

The proposed MTL-IF method was more
accurate than the common MTL method in
diagnosing kidney disease when applied to
blurred IF images. Its overall accuracy rate
was 0.94 (P < 0.01), and the AUC was
0.993

39

ImagingQ18 Xi (2020) ResNet50 1,162 Distinguish benign from
malignant kidney lesions based
on routine MR imaging

Compared with a baseline 0-rule algorithm,
the ensemble deep-learning model had a
statistically significant higher test accuracy
(0.70 vs 0.56; P = 0.004)

Imaging Kuo et al (2019) ResNet101 1,299 Prediction of kidney function
and CKD through kidney
ultrasound imaging using deep
learning

Overall CKD status classification accuracy
of AI-based model was 85.6%—higher than
that of experienced nephrologists (60.3%-
80.1%)

40

Imaging Potretzke et al
(2022)

Multivariate LR 170 To evaluate the MR-derived
TKV in ADPKD

AI algorithm–based segmentation showed
high levels of agreement and was not inferior
to interobserver variability and other
methods for determining TKV using MR

41

Abb Q19reviations: ACM, anemia control model; ADPKD, autosomal dominant polycystic kidney disease; AI, artificial intelligence; AKI, acute kidney injury; ANN, artificial neural network; AUC, area under the curve; AUROC, area under
the receiver operating characteristic curve; CI, confidence interval; CKD, chronic kidney disease; CNN, convolutional neural network; CoxPH, Cox proportional hazards model; DM, diabetes mellitus; EPTS, expected post-
transplant survival; GBS, gradient boosting survival; HD, hemodialysis; ICU, intensive care unit; IF, immunofluorescence; KDPI, Kidney Donor Profile Index; KT, kidney transplantation; LR, logistic regression; ML, machine learning;
MR, magnetic resonance; MTL, multitask learning; NB, naive Bayes; PD, peritoneal dialysis; PR, XXX; RF, random forest; ROC, receiver operating characteristic; SD, standard deviation; SVM, support vector machine; TKV, total
kidney volume.
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Figure 5. Artificial intelligence in nephrology. Abbreviation: ADPKD, autosomal dominant polycystic kidney disease.
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by training on multiple distributions and teaching the
model to respond when out of distribution.45

Liability Issues

AI algorithms are regulated by the Food and Drug
Administration, and ML is considered software as a med-
ical device. In 2019, the Food and Drug Administration
proposed a regulatory framework for AI-based software
such as software as a medical device. The Food and Drug
Administration intends to use a similar regulatory process
for AI software as traditional medical devices.46 The
American Medical Association released a policy statement
on the role of physicians and organizations in imple-
menting AI and proposed extending liability to developers
and organizations mandating AI use without risk mitiga-
tion.47 Medicolegal and ethical issues are a reality in the
day-to-day practice of medicine, and this extends to AI.
We believe AI model development should prioritize
innovation and maintain health care equity.

Ethical Issues

Moreover, ethical challenges include accountability, algo-
rithm fairness, transparency, and data privacy issues. For
example, with the increasing use of ML, insurance providers
may depend on automated decision-making tools to approve
or deny treatment. This raises ethical and accountability
concerns as it can hinder independent medical decision
making and patient participation.48 Accountability is a pri-
mary ethical concern, especially in cases of adverse events
related to ML-based medical decisions. In such instances,
who should be held liable: the physician or the developer?
Kidney Med Vol XX | Iss XX | Month 2024 | 100927
REV 5.7.0 DTD � XKME100927_proof �
FUTURE OF ML IN NEPHROLOGY

There has been a rapid expansion of AI applications in the
field of medicine, and nephrology does not remain
elusive. Significant advances in the computing ability of
ML or AI have made it possible to analyze big data, which
otherwise would not have been possible with traditional
statistical methods. AI offers a lot of promise as it can
analyze big data and identify unknown patterns that
would otherwise have not been possible with conven-
tional statistical models. AI is underused in nephrology
compared with other fields in medicine. More research
and funding are required for validation studies. In addi-
tion, initiatives are needed to introduce AI or ML in the
nephrology training curriculum so that future nephrol-
ogists are well versed in using AI to deliver individual-
ized, high-quality care.49

AI training in medical education is almost nonexistent.
EHRs are crucial for AI algorithms, but most clinicians
lack a deep understanding of data collection and pro-
cessing in clinical settings. Their EHR training is often
limited to basic charting tasks. As AI has entered this
space, we believe there is a need to develop standardized
training and curriculum to train the workforce. This will
enable trainees to become well versed in data collection
and other aspects and equip them with the ability to
independently analyze how a specific algorithm reaches a
conclusion.

As the practice of nephrology moves toward value-
based care, improving outcomes and efficiency will be
the driving factors. AI can play a significant role in
bridging the gap between health care worker shortages and
9
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enhancing patient experience. AI-driven models can help
save nursing time spent in charting and review, which in
turn translates to more time devoted to direct patient care.
Similarly, physicians can benefit from a decrease in
administrative and redundant EHR-related tasks and can
focus on complex, high-value items.
10

REV 5.7.0 DTD � XKME100927_proof �
AI in Evidence-Based Medicine and Clinical Trials

AI is increasingly used in the realm of clinical trials to
create the next generation of evidence-based medicine.
Randomized controlled trials are costly and time-
consuming, but real-world data and real-world evidence
can help address this. ML can be applied to real-world data
Kidney Med Vol XX | Iss XX | Month 2024 | 100927
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to generate real-world evidence.50 EHRs provide diverse
data for ML models to conduct simulated trials at lower
costs and in less time. For example, synthetic control arms
derived from real-world data use ML models that mimic
traditional clinical trials’ control arm.51

AI is crucial in expediting clinical trials by monitoring
patient data in real time and quickly analyzing clinical
images and scans. Deep-learning models can process
pathologic images, radiology scans, and multiple other
clinical data in a short period of time, which is humanly
impossible. Hence, ML can be applied to real-world data to
generate real-world evidence.

AI has immense potential to revolutionize the field of
nephrology, including early diagnosis, prognostication,
detection of high-risk patients, monitoring, and devel-
oping optimized and personalized treatment plans. It can
transform the workflow of a nephrologist who is already
overburdened by huge volumes of data, alert fatigue, and
other bureaucratic tasks. Before AI can be widely used in
clinical practice, we must address concerns around privacy,
ethics, and transparency. Clinicians need to understand
how AI arrives at conclusions and the decision-making
process behind it.
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CONCLUSION

In conclusion, AI has tremendous potential to transform
the delivery of kidney care and ultimately improve patient
outcomes. It can address many unmet needs in areas such
as early detection of AKI, drug dosing, dialysis, kidney
transplant, and kidney pathology. In its current form, AI is
not intended to replace nephrologists; rather, it is intended
to enhance the capabilities of physicians and other health
care professionals. However, specific challenges, such as
ethical issues and algorithm transparency, must be over-
come before its seamless integration into clinical practice.
It is of utmost importance to understand the core princi-
ples of AI model development and functions. The
nephrology community needs to invest in training a
competent workforce that will drive the next generation of
AI innovation and practice. In coming times, integration of
AI into medicine will no longer be just an option but a
necessity to stay ahead and achieve better outcomes.
Finally, we believe that medicine should remain on the
humanistic side and not be replaced by automated pro-
cedures despite the value of more precise data analysis.
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